Lesson 1, Topic 2
In Progress

Three levels at which transport phenomena can be studied

Abdulaziz July 5, 2020
Lesson Progress
0% Complete

In figure below we show a schematic diagram of a large system-for example, a large piece of equipment through which a fluid mixture is flowing. We can describe the transport of mass, momentum, energy, and angular momentum at three different levels. At the macroscopic level we write down a set of equations called the “macroscopic balances,” which describe how the mass, momentum, energy, and angular momentum in the system change because of the introduction and removal of these entities via the entering and leaving streams, and because of various other inputs to the system from the surroundings. No attempt is made to understand all the details of the system. In studying an engineering or biological system it is a good idea to start with this macroscopic description in order to make a global assessment of the problem; in some instances it is only this overall view that is needed.


At the microscopic level we examine what is happening to the fluid mixture in a small region within the equipment. We write down a set of equations called the “equations of change,” which describe how the mass, momentum, energy, and angular momentum change within this small region. The aim here is to get information about velocity, temperature, pressure, and concentration profiles within the system. This more detailed information may be required for the understanding of some processes.
At the molecular level we seek a fundamental understanding of the mechanisms of mass, momentum, energy, and angular momentum transport in terms of molecular structure and intermolecular forces. Generally this is the realm of the theoretical physicist or physical chemist, but occasionally engineers and applied scientists have to get involved at this level. This is particularly true if the processes being studied involve complex molecules, extreme ranges of temperature and pressure, or chemically reacting systems.